
MATHEMATICS OF COMPUTATION 
VOLUME 62, NUMBER 206 
APRIL 1994, PAGES 645-669 

ALGORITHMS FOR OPTIMAL DISCONTINUOUS PIECEWISE LINEAR 
AND CONSTANT L2 FITS TO CONTINUOUS FUNCTIONS 

WITH ADJUSTABLE NODES IN ONE AND TWO DIMENSIONS 

M. J. BAINES 

ABSTRACT. In this paper a direct variational approach (with nonstandard vari- 
ations) is used to generate algorithms to determine optimal discontinuous piece- 
wise linear and piecewise constant L2 fits to a continuous function of one or 
two variables with adjustable nodes. In the one-variable case the algorithm is 
fast and robust, the mesh cannot tangle, and the resulting fits are continuous 
a.e. In the two-variable case, on an adjustable triangular grid, the algorithm 
is less robust but gives good results for particular functions possessing a single 
steep feature. The extension to higher dimensions is straightforward. 

1. INTRODUCTION 

In recent years there has been much interest in the use of irregular grids for 
the representation of quantities in computational modelling. This applies both 
to economic representation of individual features and tracking of such features 
as they move. Two approaches to generate such grids are through best fits with 
variable nodes, and through equidistribution. Work on linear splines with free 
knots has been carried out by de Boor [4, 5], Chui et al. [7], Barrow et al. [3], 
and, more recently, Loach and Wathen [10]. The equidistribution approach is 
described in White [12], and references therein, Kautsky and Nichols [9], Carey 
and Dinh [6], and Pryce [11]. A comprehensive up-to-date bibliography is given 
in Grosse [8]. 

In this paper we approach the problem of finding optimal L2 fits to contin- 
uous functions with adjustable nodes via piecewise linear discontinuous func- 
tions. Using a direct variational approach but with nonstandard variations, 
interpreted numerically, new algorithms are devised, based on a two-stage iter- 
ation process whose limit is the required best approximation. In this way we 
reduce the nonlinearity of the problem (eliminating it altogether for linear fits in 
one dimension) and obtain algorithms which are fast and robust in comparison 
with existing methods. Using the same approach, we derive similar algorithms 
providing best piecewise constant L2 fits with adjustable nodes. 

It is known that for continuous functions in one dimension the best piecewise 
linear fit amongst discontinuous functions with adjustable nodes is continuous 
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[7]. This result also comes out of the present analysis, except for certain cases 
where isolated discontinuities can occur. Thus, the piecewise linear algorithm 
in one dimension generates piecewise linear continuous L2 fits with adjustable 
nodes a.e. 

In two dimensions the algorithms are based on variable triangulations of the 
plane, although with invariant connectivity. In this more complex case the 
algorithms are less robust, and a relaxation procedure is used. Also, owing to 
the numerical intricacies in the implementation, we have developed simplified 
forms of the algorithms, which give approximately optimal discontinuous linear 
and piecewise constant fits with adjustable nodes to a given continuous function 
on a variable triangulation of the plane. 

The algorithms are demonstrated on various test functions. In one dimen- 
sion, the methods are fast and robust, and give excellent results without any 
mesh tangling. In two dimensions, owing to the complexity of the problem, 
only simple functions (with a single severe feature) have been fitted. 

The plan of the paper is as follows. In ?2 we obtain expeditious natural con- 
ditions in one dimension for the L2 error between a given continuous function 
and a piecewise linear discontinuous function with adjustable nodes to have 
an extremum. These conditions are then used in ?3 as the basis of a new it- 
erative algorithm designed to obtain the required best fit. The conditions also 
have a useful geometrical interpretation. Section 3 also contains results on 
two test functions. The ideas of ??2 and 3 are repeated in ?4 for the case of 
piecewise constant functions with adjustable nodes. In ?5 similar conditions 
are obtained in two dimensions for the L2 error between a given continuous 
function and a piecewise linear discontinuous function on a variable triangular 
grid with adjustable nodes to have an extremum. These are used as the basis 
for a two-dimensional algorithm in ?6, which also includes a simplified imple- 
mentation of the algorithm. Once again, the pattern is repeated for piecewise 
constant functions in ?7. Finally, in ?8, the connection between such best fits 
and equidistribution is studied (in one dimension). 

2. PIECEWISE LINEAR FITS IN ONE DIMENSION 

Let f(x) be a given Cl function of a scalar variable x in the interval 
(xo, x,+i), and let Uk(x) be any member of the family Sk of linear functions 
in the interval (xk-l, Xk), where x0 < xk-l < xk ? I . Then there exists a 
unique member uJ(x) of Sk such that 

fXk 

(2.1) oJ (f(x) -Uk(X))2 dx| u =u* = ? 
JXkl UKUk 

or, equivalently, 

Xk 

(2.2) J (f(x)- Uk(X))3Uk dx = 0 VUk E Sk. 
X-1 

The function u* (x) is the best L2 fit to f(x) from the family Sk . 
For the interval (xo, x,+i), the union of the intervals (xk-l, Xk) (k = 

1, ... , n + 1), the best L2 fit u* (x) to f(x) from the family S of piecewise 
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linear discontinuous functions u(x) with (arbitrary) jumps at x = Xk (k = 
1, .I. , n) satisfies 

Xn+1 n+1 Xk 

(2.3) 5 I{f(x) u(x)}2 dxIu=u =EZ] {f(x) -uk(x)}2 dxI U* = 0 
.1 k=1 k-I 

and is also given by (2.1) or (2.2) (k = 1,..., n), since S = eSk (k = 
1, .I. , n) and the problem decouples. The solution is u* (x) = U u* (x) . 

Consider now the problem of determining the best L2 fit to f(x) from the 
family SD of piecewise linear discontinuous functions having arbitrary jumps 
at X = Xk (k = 1, ..., n) on a variable partition (xl, ..., xk, *., xn) of 
the fixed interval (xo, xn+1). The solution again satisfies (2.3) but, since the 
Xk (k = 1, ... , n) are to be varied as well as the Uk, the problem does not 
decouple in an obvious way. However, as we shall see, it is possible to regard 
it as the limit of a sequence of problems, which include the decoupled problem 
(2.2). 

It is convenient to introduce here a new independent variable 4, which re- 
mains fixed, while x joins u as a dependent variable, both now depending on 
4 and denoted by x and ua , respectively. Then, with ut() = U(Xk(4)), (2.3) 
becomes (reserving suffixes for interval end points only) 

n+1 Xk} d c 
(2.4) Z j{f(X(d)) - dX =o. 

Taking the variations of the integral in (2.4) gives 

(2.5) J {2{f(k(c))- ' - dS 

+{f(x(4)) _ (4)}2d(x) } df. 

Integrating the last term by parts leads to 

fXk dk dz7i 

(2.6) - ]Xk 2{f(x(4)) - fi(}{f'(x(4)) - 

- (f(' - ()) - ))2l_ k-1 + (fQ (x))- ))2 

Substituting (2.6) for the last term in (2.5), collecting terms, and returning to 
the x, u notation, we obtain from (2.4) 

n+l Xk n 

(2.7) , J 2{f(x) - u(x)}(5u - ux5x) dx + Z[{f(x) - U(X)}2]jgXj = 0, 
k=1 Xkl j=1 

where the second summation is now over nodes j and the square bracket no- 
tation [ ]j denotes the jump in the relevant quantity at the node j. With the 
constraint 3x = 0, this leads back to (2.3) and (2.2) and to equations for the 
best piecewise linear discontinuous L2 fit to f(x) with fixed nodes. 
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J/~~~~ 

j- 1 j+l k - I k k- I k 

(a) (b) (c) 
FIGURE 1. Basis functions in one dimension 

Choosing oSx = O and 6u to be in the space of piecewise linear discontinuous 
functions, (2.7) yields the conditions 

Xk 

(2.8) | f(x) - U*(X)10kidx = O (i = I1, 2) 
X-I 

for the best fit, denoted by u* and x* , where Ok I, 42 are the local linear 
basis functions in element k (see Figure lb). 

Alternatively, remembering that for continuity 6x must lie in the space of 
continuous functions, we may set 6x = ai (where aj is the standard basis 
function for continuous piecewise linear functions: see Figure la), together 
with the particular constraint 

(2.9) o6u = U*6x, 

in (2.7) to obtain 

(2.10) [(f(X*) 
_ 

U*(X*))2]j = O . 

The simultaneous solution of (2.8) and (2. 10) gives the required fit u* (x*) . 
With L. R denoting the left and right values at the (variable) node j (see 

Figure Ila), it follows from (2. 10) that if UL , UR lie on the same side of f(xj*) 
(cf. Figure 2(a)), 

(2.1 1) fX)- =fWX) -U* =->. U* = U* 

(irrespective of f(x) as long as it is continuous) and therefore that u* is con- 
tinuous at the new position of the node. On the other hand, if UL , UR lie on 
opposite sides of f(xj*) (cf. Figure 2(b)), then 

(2.12) -(f(xj*) - u) = f(xj* )- u =* u* + u* = 2f(xj;), 

in which case u* is discontinuous and its jump is bisected by f(xj*) . 
Now it is known [7, 10] that for continuous functions with variable nodes, 

f(x) , the best L2 fit amongst discontinuous piecewise linear functions with 
variable nodes is continuous, which clearly corresponds to (2.1 1). The case 
(2.12), with a definite discontinuity in u* at xj*, therefore, cannot correspond 
to the best least squares fit when f(x) is continuous, and must correspond to 
only a local minimum. 
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j - 1 j j+ 1 

(a) 

j -1 j + 

(b) 

FIGURE 2. Linear fits to (a) convex and (b) nonconvex functions 

3. AN ALGORITHM FOR VARIABLE NODE DISCONTINUOUS 

PIECEWISE LINEAR FITS 

An algorithm to find optimal piecewise linear L2 fits with variable nodes 
is now constructed in two stages (carried out alternately until convergence is 
obtained), corresponding to the particular choices of variations referred to in 
?2 above. 

Stage (i). 

(3.1) Jxj=O (j= l, ...,n), 5U = qkl or 2 (k = l, ...,n+l). 

This stage of the algorithm is governed by (2.8) and corresponds to the best L2 
fit u(x) amongst the family SD of linear functions discontinuous at prescribed 
nodes, as in (2.1), (2.2). 

Stage (ii). 

(3.2) JXj = aXj, JUj - U,Xxj = O (j = I,.. n). 

This stage, which combines both u- and x-variations to give variations in 
u "following the motion", corresponds to finding xj such that (2.10) holds. 
Geometrically, we see from (2.9) that variations of x, u are restricted to points 
lying on the lines of the current piecewise linear discontinuous approximation 
(possibly linearly extrapolated). 
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The algorithm is analogous to minimizing a quadratic function q(x, y) using 
two search directions d 1 and d2 spanning the plane. Starting from some initial 
guess, we may alternately minimize q in the directions d 1 and d2. Similarly, 
in the present case, to find the best L2 fit, we may begin with an initial guess 
{xj}, {uj}; stage (i) is to find the minimum in the linear manifold specified by 
the variations given in (3.1) and so solve (2.8) for new, generally discontinuous, 
values w1, w2 of u at the point j with the xi fixed; stage (ii) is to find the 
minimum in the linear manifold specified by the variations given in (3.2) and 
so solve (2.10) approximately for new {xj} by the implementation of (2.11), 
(2.12), as discussed below. Repetition of these stages gives a sequence which, 
if convergent, provides a solution of (2.4) or (2.7). As with similar problems of 
this type, the limit may correspond only to a local minimum. 

Since in stage (ii), u(x) is restricted in element k by du = u.,jx, then, if 
it passes through the point (xi, WL), say, we have 

(3.3) u(x) - WL = (X - X)(Ux)k. 

Hence, (2.10) becomes 

(3.4) {*(X*)-WL-(X -Xi)(Ux)k} -{f(x )-WR (X -Xi)(Ux)k_I2 = 0, 

where WL and WR are the values of the current stage-(i) approximations to the 
left and right of node j. In the case corresponding to (2.1 1) we deduce that, if 
(Ux)k $ (Ux)k-1, 

(3.5) Xynew -xold WR-WL 

( j X (Ux)k - (Ux)k-1 

Here, xy?ld is the previous approximation and XyneW the one currently sought. 
Call this the intersection construction (see Figure 2(a)). Similarly, in the case 
corresponding to (2.12) we have 

(3.6) WL + WR + (XjneW - Xyld){(Ux)kl + (UX)k} = 2f(xjnew), 

giving, if (uX)k + (Ux)k1 $ 0, 

(3.7) X7new xold - 2f(xyew) - (WL + WR) 

(Ux)k + (Ux)k-1 

Call this the averaging construction (see Figure 2(b)). 
Observe that the expression in (3.4) is negative at the nearest point (to xj) 

that u intersects f in element k - 1, and is positive at the nearest point (to 
xj) that u intersects f in element k (see Figure 2). There is therefore a root 
of (3.4) between these points. Moreover, if this root is chosen, all roots (for 
different k) lie between such pairs of intersection points, and therefore mesh 
tangling cannot occur. 

Note that near to inflection points the averaging construction (3.7) may occur 
and the "untangled" limit will be only a local minimum. (One possible way 
round this difficulty is to change the number of points locally by one, thus 
breaking the symmetry. Numerical experience indicates that this does indeed 
avoid the problem.) 

For regions in which f(x) is convex the new approximation to xj is provided 
by the displacement (3.5), i.e., the intersections of lines in adjacent elements 
(see Figure 2a), since in this case the curly brackets in (3.4) are of the same 
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sign when approached from left or right. Where f (x) has an inflection point 
the intersection construction is replaced by the averaging construction (3.7): 
this occurs when values of the curly brackets in (3.4) are of opposite sign when 
approached from left or right, as in Figure 2b. 

Note that the calculation of Xjew from (3.7) is implicit, since f(xjyew) occurs 
on the right-hand side. In order to simplify the solution of (3.7), we may make 
use of the outer iteration in this case to move towards the converged xj by using 
the xyld_values at the previous step. In the special case (Ux)k-1 = (Ux)k = 0, 
equations (3.4), (3.6) show that xjyew is indeterminate and there is no advantage 
in moving the node at all. 

If f(x) is convex, we see from (2.1 1) that the result of the converged iteration 
(stage (i)-stage (ii)-repeated alternately) is the best continuous L2 fit using 
piecewise linear approximation. If f (x) is not convex, there may possibly be 
isolated discontinuities in the fitted function at inflection points, where only a 
local minimum occurs. It is possible to replace such a discontinuous function 
locally by a continuous approximation, by, say, simply averaging the two nodal 
values (in which case the result is the function value itself). This is of course at 
the expense of abandoning the optimal fit at these isolated points. The resulting 
approximation may however be used as an initialization for other algorithms 
dedicated to continuous best fits [10]. 

In summary the algorithm is: 
1. set up the initial grid; 
2. project f elementwise into the space of piecewise linear discontinuous 

functions on the current grid (stage (i)); 
3. determine the next grid by the intersection construction (3.5) or (excep- 

tionally) the averaging construction (3.7) (stage (ii)); 
4. if the new grid is too different from the previous grid, go to 2. 

The algorithm, which is fast and robust, finds in appropriate cases optimal 
linear spline approximations with variable knots: indeed, by concentrating on 
piecewise linear discontinuous fits, the procedure effectively linearizes the prob- 
lem and avoids many of the difficulties generated by restricting the search to 
continuous fits at the outset. Further details are given in Baines [1]. 

One step of the algorithm bears a striking resemblance to the Moving Finite 
Element procedure in the two-step form described by Baines and Wathen [2]. 
The connection is described more fully in a future publication. 

Results are shown for two examples, in Figures 3(a), 3(b) (see next page): 

(a) tanh {20(x - 0.5)}, 1 1 interior nodes; 

(b) I Oe-lOx + 20/{1 + 400(x - 0.7)2}, 9 interior nodes. 

In each case the fixed interval is [0, 1] and the initial grid is equally spaced. 
Example (a) is a severe front with a single inflection. Example (b) is a test 
example posed by Pryce [11]. 

In each example the trajectories of the nodes (i) are shown as they move 
towards their final positions together with the function (ii) and the fit obtained 
(iii). The process is taken to have converged when the lo norm of the nodal 
position updates is less than 10-4 . The number of iterations appears on the or- 
dinate axis of the trajectories. In general, an extra order of magnitude reduction 
is obtained in the L2 error over the equispaced case. 
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FIGURE 3. Results for piecewise linear fits in one dimension 
(i) trajectories, (ii) function, (iii) fit 
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Although the theory has been derived only for C1 functions, numerical ex- 
periments show that the algorithm also gives optimal fits to functions which are 
only piecewise C1 . A simple example shows that the intersection construction 
drives the nearest node towards the slope discontinuity (cf. Figure 2(a)), where 
it remains while the fits either side converge. 

The algorithm also gives piecewise linear best fits to functions which have 
isolated discontinuities. In this case there are extra jump discontinuity terms in 
(2.7) arising from the variation of the integral which vanish only when a node 
is located at a discontinuity itself. In numerical experiments the nearest node 
moves towards such a point, where it remains, while once again the fits either 
side converge. 

A simplified algorithm may be obtained by fitting instead of f(x) its current 
quadratic interpolant in each element, using the value at the midpoint of the 
element as the third matched value. The resulting algorithm avoids quadrature 
and gives a simple formula for the iteration grid generator. For further details 
see Baines [1]. 

4. PIECEWISE CONSTANT FITS AND ADJUSTABLE NODES IN ONE DIMENSION 

The approach is readily adapted for best piecewise constant fits with variable 
nodes. In this case the conditions for the best fit, denote by u*, and the grid, 
denoted by x*, are 

{Xk 

(4.1) J{f(x) - u*(x)},rk(x)dx = 0 

(cf. (2.8)), where 7rk(X) is the characteristic function in the element k (see 
Figure 1c), and 

(4.2) [(f(x*) - U*)2]j = 0 

(cf. (2.10)). 
With L, R denoting values to the left and right of the (variable) node j, it 

follows from (4.2) that, as in ?2, if UL, UR lie on the same side of f(xj*), 

(4.3) f (x = )-U x = f (x;)- U = U 

or, if UL, UR lie on opposite sides of f(xj), 

(4.4) -(f(xj) - u4) = f(xj7) - u* =E u3 + u4 = 2f(xj*). 
It is easy to see that the latter corresponds to monotonic behavior of f while, 
although the former may exceptionally occur at maxima or minima, it gives no 
information about the position of xj* (see Figures 4a, 4b). 

The solution is therefore the set of best constant fits in separate elements 
which have the averaging property (4.4). 

The corresponding algorithm to find the best piecewise constant L2 fit with 
variable nodes is again constructed in two stages (carried out alternately until 
convergence), corresponding to the above. 

Stage (i). 

(4.5) x =0 (j= 1,..., n), U= 7rk (k= 1, 2, ...,n+ 1). 

This stage of the algorithm is governed by (4.1) and corresponds to the best L2 
fit amongst the family rID of piecewise constant functions on a fixed grid. 
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j-l 1 j+l 

(a) 

j-l j j+l 

(b) 

FIGURE 4. Constant fits to (a) monotonic and (b) nonmono- 
tonic functions 

Stage (ii). 

(4.6) 3xj = aj, du=O (j= 1, 2, ..,n). 

This stage corresponds to finding xj such that (4.2) holds, with variations of 
u restricted to points lying on the current piecewise constant discontinuous 
approximation in element k (possibly extrapolated) . 

As in ?2, the expression in (4.2) is negative where u intersects f in element 
k - 1 , and positive where u intersects f in element k (see Figure 4). There is 
therefore a root between these points. Moreover, if this root is chosen, all roots 
(for different k) are separated by these intersections and mesh tangling cannot 
occur. 

Since, in stage (ii), u(x) is restricted in element k by 5u = 0, then u(x) 
is equal to the value of the current stage-(i) approximation within the whole 
element. Hence, (4.4) becomes 

(4.7) WL + WR = 2f(xj) 
cf. (3.6), where WL and WR are the values of the current stage-(i) approxima- 
tion to the left and right of node j. Any standard algorithm may be used to 
extract xj: here we have used a bisection method. 
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FIGURE 5. Results for piecewise constant fits in one dimension 
(i) trajectory, (ii) function, (iii) fit 
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In the case of (4.3) there is no solution for xj unless UL = UR. In this 
exceptional case any xj in the element is a solution, and there is therefore no 
reason to adjust the node position at the current iteration. 

In summary the algorithm is: 

1. set up an initial grid; 
2. project f elementwise into the space of piecewise constant functions 

on the current grid (stage (i)); 
3. determine the new grid by the averaging construction (4.9) (stage (ii)); 
4. if the new grid is too different from the previous grid, go to 2. 

Results are given for the same test examples as in ?3, shown in Figures 5(a), 
5(b), except that for better resolution example (b) is done with 19 interior nodes: 

(a) tanh{20(x - 0.5)}, 1 1 interior nodes; 

(b) lOe-lOx + 20/{1 + 400(x - O.7)2}, 19 interior nodes. 

In both cases the interval is [0, 1] and the initial grid is again equally spaced. 
In each example the trajectories of the nodes (i) are shown as they move towards 
their final positions, together with the function (ii) and the fit obtained (iii). The 
process is taken to have converged when the lo norm of the nodal position 
updates is less than 10-4 . The number of iterations appears on the ordinate 
axis of the trajectories. An order-of-magnitude reduction in the L2 error over 
the fixed node case is obtained. 

Again, numerical experiments indicate that the algorithm also gives best 
piecewise constant fits to CO functions which are only piecewise continuous, 
with a node moving towards a discontinuity, and remaining there, while the rest 
of the fit converges. 

A simplified algorithm, avoiding quadrature, may be obtained by fitting in- 
stead of f (x) its current linear interpolant in each element, giving a very simple 
formula for the iterative grid generator. For details see Baines [1]. 

5. PIECEWISE LINEAR FITS IN TWO DIMENSIONS 

The generalization of these techniques to two dimensions raises a number 
of difficulties. In principle, the same approach yields algorithms for obtaining 
best discontinuous fits to given continuous functions on a tesselation of the 
plane. The solution of the nodal position stage of the algorithm is more difficult, 
however, and requires additional numerical techniques. Furthermore, there is 
not the same simple connection in two dimensions between discontinuous linear 
fits and continuous ones. With these important provisos, however, we describe 
a method and an algorithm which is at least partially successful in that it obtains 
good representation of sharp functions in two dimensions, and generalizes to 
higher dimensions. 

Let f(x, y) be a given C1 function of the two variables x and y in a 
domain Q, and let Uk(x, y) be a member of the family S2 of linear functions 
on a triangular subdomain Ak of Q. Then there exists a unique member 
u*(x, y) of Sk such that 

(5.1) Lk L {(x, Y)-Uk( Y)} dxdy|Uk=U* = 0, Uk E Sk 
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or, equivalently, 

(5.2) 2 5kXy S~ (5.2) J f(x,9 y) - U(X, Y)16uk(X, y) dx dy = ? V2k (X, Y) E Sk' 
k 

The function u* (x, y) is the best L2 fit to f(x, y) from the family Sk. 
For the region Q2, the union of triangles Ak, the best L2 fit uk(x,y) 

to f(x, y) from the family S2 of piecewise linear discontinuous functions 
Uk (x, y) satisfies 

3 {f(x, y) - U*(x, y)}2dxdy 

(5.3)' 
JAk {I(X,y)-uJ(x, y)}2 dxdy = 0 k kk 

and is also given by (5.1 ) or (5.2), since S2 =-[ Sk2 and the problem decouples. 
The solution is u*(x, Y) = U Uk(X, y) . 

Now consider the problem of determining the best L2 fit to f(x, y) from 
the family 52 of piecewise linear discontinuous functions on a variable trian- 
gulation Uk Ak of the fixed domain Q, where the internal vertices of the Ak 
are varied. 

It is again convenient to introduce new independent variables 4, t, which 
remain fixed, while x and y join u as dependent variables, all three now 
depending on 4 and q and being denoted by x, y, and ui, respectively. 
Then, with u(, iC) = u(x'(, il), 9(4, i)), (5.3) becomes 

(5.4) kL { ,), 9(u, ii))- (, 7)}2Jddq1= 0, 
k ak 

where J = ) is the Jacobian of the transformation. 
Taking the variations of the integral in (5.4) gives 

2 + Q if(xQ(, 9() ?(,9 C)) - u(Q, C)} 
k 

(.5) * IM,x( q) 9 g(4 C))x(, (11 ) 
+fy x( 1,(, ))y, rl-u(,rt} 

+{If (', ,1), 9(g, j i)) - u ?)}25J} dX d . 

Integrating the last term by parts leads to 

- IAk 2{f(x(, ) ) (, A ))- (, 01)} 
k 

(5.6) * {V(x,y)f(x(, t i), 9(4, 11))J - V(), U}3 6x dg dil 

+ A fx(,Er y(4 ) u(, )}(xby* n'ds, 
Ak 

where n is the outward drawn normal to an element ds of the boundary aAk 

of Ak. 
Substituting (5.6) into (5.5), collecting terms, and returning to the x, y, u 

notation, we obtain from (5.4) 



658 M. J. BAINES 

Pkl 

(a) (b) (c) 

FIGURE 6. Basis functions in two dimensions 

|2{ f(x,. y) - u(x,. y)} f Au - u, 6x - uy6y} dx dy 

(5.7) 
k 

+ , fX (x y) _ u(x,~ y)}2(6X, 6y) * "nds = O . 
k Ak 

With the constraints oSx, by = 0, this leads back to (5.3) and (5.2) and to 
equations for the best piecewise linear discontinuous L2 fit to f (x , y) with 
fixed nodes. 

Choosing dx, by = O and dSu to be in the space of piecewise linear discon- 
tinuous functions gives for the best discontinuous fit, denoted by u* x* and 
y*, the conditions 

(5.8) | {fx, y) - u* (x, Y)+ki dx dy = O (i = 1, 2, 3), 
k 

where (tkl , 4)2, 0k0 are local linear basis functions in the element k (see 
Figure 6b). Alternatively, remembering that 6xj, fayj must lie in the space 
of piecewise linear continuous functions, and letting aj (see Figure 6a) be the 
two-dimensional linear finite element basis function at node j, we may set 
(separately) 

dxj = aj, Jyj = 0, 6uj = u,xXj 

(5.9) and 
dxj =0, 6yj = aj, Juj =uy = yj 

(cf. (2.9)) in turn in (5.7) to obtain 

(5.10) -sa (f(x, y) _ u*(x*, y*))2 ajnl ds = O 

I \~~~-sa 

for xj* , and 

(5.11) -sa (f(x, y) _ u*(x*, y*))2 ajn2 ds = O 

a~~~~jsa 

for yj*, where (n = (n, n2) and " j-star" indicates the spokes, i.e., the union 
of the sides of the triangles passing tionsi the node j (see Figure 7). 

The simultaneous solution of (5.8) and (5.10)-(5. 1) gives the required best 
fit u*(x*,y*). 
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k2~~~~~~~~~~~~1 

k 

12 

j kl 

jstar 

FIGURE 7. Node connections in two dimensions 

6. AN ALGORITHM FOR VARIABLE NODE DISCONTINUOUS 
PIECEWISE LINEAR FITS ON A VARIABLE TRIANGULATION IN TWO DIMENSIONS 

The algorithm used to find best discontinuous linear L2 fit with variable 
nodes is constructed in two stages (carried out repeatedly until convergence), 
corresponding to the choice of variations referred to in ?5 above. 

Stage (i). 
(6.1) 3X1 = 0, Jyj = 0, UU = qkl X, k2, or q$3. 

This stage of the algorithm corresponds to the best L2 fit amongst discontinuous 
piecewise linear functions on a prescribed grid, as in (5.1), (5.2), and (5.8) 
above. 

Stage (ii). x variations 
(6.2) 5xj =caj, 3yj =0, 3Uj-ux1xj =0 (j= 1, 2, ... , n). 

Stage (ii). y variations 

(6.3) Jxj = 0, 5 yj = aj , (5uj 
- 

uy(3yj = O (j = 1, 2,5.... , n). 
Stage (ii), which combines u- and x- (or y-) variations to give variations in 
u "following the motion" in the x- (or y-) directions, corresponds to finding 
xj (or yj) such that (5.10) (or (5.11)) holds. Geometrically, we see from (6.2) 
or (6.3) that variations of x, u (or (y, u)) are restricted to points lying on 
certain planes constructed from the stage-(i) solution (possibly extrapolated) in 
each of the elements k surrounding j. 

The problem of finding Uk(X, y), belonging to Sk2, which satisfies (5.8) is 
standard. Setting 

3 

(6.4) Uk(X, y) = ZWkid4i(X, Y) 
i=l 

in element k, where i ranges over the corners of Ak, we substitute into (5.8) 
and find that 

(6.5) CkWk =bk 

where Wk = {Uki}, bk = {bki}, bki = fAk f(x, Y)qki dx dy, and 

(6.6) C= k[1 2 1 
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with Ak being the area of the triangular element k. 
The other problems, those of finding xj satisfying (5.10) with 3uj = u,5xj 

and yj satisfying (5.1 1) with 5uj = uy5yj, are more difficult nonlinear prob- 
lems. To make progress, we solve them approximately, with the following sim- 
plifications: 

(a) replace the line integrals in (5.10) and (5.11) by a simple quadrature 
rule; 

(b) hold the xj in f(x, y) constant in solving for the new x;, and embed 
the necessary iteration in the overall iteration, as in the "averaging" 
construction algorithm of ?3; similarly for the yj. 

The device (b) is as used in ?3 (equation (3.7)) to obtain converged solutions 
for xj*, in effect a "lagged" form of the equation being solved as the overall 
iteration converges. 

Let k = k1, ..., ke denote the elements surrounding the node j, and let 
11, 12 denote the edges of the element k emanating from node j (see Figure 
7). Then (5.10) may be written 

ke 12 

(6.7) Z ZEi {f(x, y) - u(x, y)}2(_ sin 01)aj ds, = 0, 
k=kl 1=11 I C.e 

where O is the angle between the edge / and the x-axis, so that n1 = - sin 01. 
Since u(x, y) is restricted in element k by du = u,Jx, Jy = 0, then, if it 
passes through the point (Xi, yi, Wjk), say, where Wjk is the value of the fit 
obtained from stage (i) at node j in element k, we have 

(6.8) u(x, y) -Wjk = (X-Xi)(Ux)k + (Y-Yi)(Uy)k, 

so that, writing sin 61 ds, = syl, the integral (6.7) becomes 

ke 12 

(6.9) I f(Xl {f(x/, y)wjk -(xl -xi)(ux)k-(y,-yj)(uyy)k}2& dyl = 0, 
Re I 

k=kl 1=11 edge 

where k1 is a linear basis function along the side / (the restriction of aj to the 
edge I, with the value 1 at j and 0 at the other end of the line), to be solved for 
xj . This is a highly nonlinear equation, bearing in mind the dependence of the 
range of integration on the unknown xj, but we may reduce it to a quadratic 
as follows. 

As in ?3, we introduce an iteration (to be run in tandem with the main 
iteration) in which we solve (6.9) for (i+1) in terms of '), where f and ux 
are evaluated at W while xj and the range of integration are evaluated at 

(i+l) Xj 

Equation (6.9) can then be written 

(6.10) AX2 - BX + C = O, 

where 

(6.11) x -x I) Xi 
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(6.12) 
k2 12 

A = E E j (UX2 )k1 dyl, 
k=kl 1=11 edge 

k2 12 

B = L EYI {f (xl, Y1) -Wjk - (Xl -Xi)(UX) k - (Yi -Y)(uy) k}l dy/, 

k=kl 1=11 edgel 

k2 12 

C = ZE Ej {X(Xl, Yi) -Wjk - (Xl -Xi) (U )k - (Y -Yi) (uY)k}20 dyi, 
k=kl 1=11 edgel 

and (provided that B2 > 4AC) solved for X. The integrals in (6.12) may be 
evaluated by a quadrature rule. Both Gaussian quadrature and the trapezium 
rule have been tried. In the latter case (6.12) simplifies considerably. 

Two real solutions of (6. 10) may be regarded in simple situations as analogous 
to the "intersection" solution and "averaged" solution encountered in the 1- 
D case discussed in ?3, corresponding to convex/concave parts and inflection 
points of the function f, respectively. In the present two-dimensional case, the 
dimensionality and the several contributions to A, B, C blur the simple 1 -D 
interpretation, but for consistency we choose the root corresponding to least 
movement. If B2 = 4AC in (6.10), the roots coalesce, while if B2 < 4AC, 
imaginary roots occur. In the latter case we go for the "nearest" real solution, 
which is the equal-roots case. 

Numerical difficulties arise when A, B, and/or C become very small, which 
may be due to nearly plane patches in f or simply closeness to the best fit. A 
threshold parameter is therefore introduced which protects the roots from the 
resultant singularities. If IAI, IB , or ICI fall short of the threshold parameter, 
special solutions are taken. In particular, note that if ICI is small, we are already 
close to convergence. 

Since the nontangling property in one dimension is no longer guaranteed, 
there may still be the possiblity of nodes being carried across element bound- 
aries, leading to triangles with negative area. In these situations a relaxation 
parameter is introduced which restricts each node to stay within the surround- 
ing triangles. Even then, there are rare occasions when a triangle area may 
go negative, in which case a local smoothing can be applied as an emergency 
measure, and the algorithm continued. 

The calculation of y(i+l) proceeds in a similar way. 
This algorithm gives an approximate optimal discontinuous linear fit on tri- 

angles. To obtain a useful continuous piecewise linear approximation, we may 
take an average of the wjk-values at a given node j from each adjacent element 
k to give an approximate nodal value Wj , or use the present approximation as 
a first guess in an algorithm dedicated to finding a continuous best fit. 

In summary the algorithm is: 
1. set up the initial grid; 
2. project f (x, y) elementwise into the space of piecewise linear discontin- 

uous functions on the current grid (stage (i)); 
3. determine the next grid by solving (6.10) (and its y-direction counterpart) 

with a relaxation factor to prevent tangling (stage (ii)); 
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4. if the new grid is too different from the previous grid go to 2. 
Results are shown in Figures 8(a-c) for three examples, each being a sharp 

front with a different orientation: 
(a) tanh 20(x - I), 
(b) tanh 20(x + y - 1), 
(c) tanh 20(x2 + y2 - 

all on the unit square with 49 interior grid points. In each case the initial grid 
is uniform (Figure 8). 

Figure 8(a) shows the grid and profile for example (a) before and after con- 
vergence of the algorithm, while Figures 8(b) and 8(c) show the corresponding 
results in the case of examples (b) and (c), respectively. Note that the profiles 
show piecewise continuous linear plots (obtained by averaging at the nodes), 
whereas the true plots should be piecewise linear discontinuous. 

Table 1 (see p. 664) gives a listing of L2 errors. Errors from a corresponding 
piecewise linear continuous function (obtained by simple averaging of the nodal 
values) are shown in parentheses. 

In examples (a) and (c), boundary node displacements along the boundary 
are set equal to the corresponding displacements on the next grid line in from 
the boundary. This cleans up a lot of the noise generated by the special behavior 
of the boundary nodes and the resulting pollution as it spreads into the interior, 
giving an extra order-of-magnitude accuracy in this way. 

As in one dimension, a simplified algorithm exists which fits instead of 
f(x, y) a quadratic interpolant version. This results in simple formulae for 
stage (i), although stages (ii) and (iii) are still tricky. 

7 /Z~~~~~~~~~ 

(a) 

FIGURE 8. Results for piecewise linear fits in two dimensions 
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(c) 

FIGURE 8. (Continued) 
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TABLE 1. L2 errors for piecewise linear discontinuous best fits 

initial final no. of 
error error steps 

(a) 3.77 x 10-3 2.37 x 10-5 40 
(2.49 x 10-2) (5.28 x 10-5) 

(b) 4.06 x 10-3 5.89 x 10-6 80 
(3.90 x 10-2) (1.37 x 10-5) 

(c) 6.62 x 10-3 2.43 x 10-4 40 
(2.86 x 10-2) (4.53 x 10-4) 

7. PIECEWISE CONSTANT FITS IN TWO DIMENSIONS 

In the case of best piecewise constant fits with adjustable nodes in two di- 
mensions, uX = uy = 0, and (5.7) reduces to 

Ez 2{f(x, y) - u(x, y)}bu dx dy 
(7.1) k Ak 

+ 
I {f(x, y) _ u(x, y)}2(x, dy) * n ds = O. 

k JAk 

With du as the characteristic function 7rk(X, y) on element k (Figure 6c), 
and dx, 6y taken successively, as in ?4, to be the local "hat" function associ- 
ated with node j, we have that the conditions for the best piecewise constant 
L2 fit to f(x, y), denoted by u*, xj, and yj, are (cf. (5.8)-(5.1 1)) 

(7.2) {f (x, y) - w*} dx dy = 0, 
k~~~~~ 

(7.3) 1 {f(x, y) - w l(x Y)} ajnl ds = 0, 
j-star 

Px ) k k 

f 5~~~~~~~~2 
(7.4) f {f(x, y) - Zw*7r(x, Y) } jn2 ds = 0, 

j-star 
PxY 

k* 
k 

where j-star is as in Figure 7, aj is as in Figure 6a, k runs over the elements 
surrounding node j, and 

(7.5) u*(x, y) = Zwkk(x, y) 
k 

From (7.2), 

(7.6) W * J f(x, y) dxdy, 

while from (7.3) and (7.4) we may obtain new values of xj, yj. 
This leads to the following algorithm: 
Stage (i). 

(7.7) xj = 6yj = 0, JU = 7nk. 
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This stage of the algorithm corresponds to the best L2 fit amongst piecewise 
constant functions on a prescribed grid (cf. (7.6)). 

Stage (ii). x variations 

(7.8) b5uy = yj = 0, 3xj = aj. 

Stage (ii). y variations 

(7.9) 3uj = 3xj = 0, 6Yj = aj. 

Stage (ii) corresponds to finding xj (or yj) such that (7.3) (or (7.4)) holds. 
Equation (7.3) may be written as 

ke 12 

(7.10) zz/ {f(xl, Y1) - Wk}2Oldy1 = 0 
k=kl 1=11 ege 

(cf. (6.9)), to be solved for xj with Yj fixed, and (7.4) as 

ke 12 

(7.11) E E {f(xl, YI) - Wk }20 dxl = O 
k=kl 1=11 edgeI 

to be solved for yj with xj fixed. 
To solve (7.10), (7.1 1) for the new node positions xj, yj, respectively, we 

simplify by using trapezium rule quadrature and bisection routines. Again, 
since the nontangling property is not guaranteed in two dimensions, a relaxation 
parameter must be introduced to prevent nodes crossing element boundaries. 

In summary the algorithm is: 
1. set up the initial grid; 
2. project f(x, y) elementwise into the space of piecewise constant func- 

tions Wk in each element k (stage (i)); 
3. determine the new grid by solving (7.10) and (7.11) for xj, yj, respec- 

tively, using bisection, with a relaxation factor to prevent tangling (stage (ii)); 
4. if the grid is too different from the previous grid go to 2. 
Results are shown in Figures 9(a-c) (next page) for the same three examples 

as in ?6 on the same unit square with the same number of interior grid points. 
The initial grid is again uniform (Figure 8). Figure 9(a) shows grids and profiles 
for example (a) before and after convergence of the algorithm, while Figures 
9(b) and 9(c) show the corresponding results in the case of examples (b) and 
(c), respectively. Note that, owing to the graphics, the figures show piecewise 
continuous linear plots, whereas the true plots should be piecewise constant. 

The corresponding list of L2 errors is shown in Table 2. 

TABLE 2. L2 errors for piecewise constant best fits 

initial final no. of 
error error steps 

(a) 1.8 1.55 x 10-3 40 
(b) 1.8 8.54 x 10-4 40 
(c) 1.84 2.34 x 10-3 20 
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(a) 

(b) 

FIGURE 9. Results for piecewise constant fits in two dimensions 
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(c) 

FIGURE 9. (Continued) 

In example (a), node displacements along the boundary are again set equal to 
the corresponding displacements on the next grid line in from the boundary. 
Again, this cleans up a lot of the noise generated by the special behavior of the 
boundary nodes and the resulting pollution as its spreads into the interior. 

Instead of fitting f(x, y) , it is possible to fit the linear interpolant of f(x, y) 
and still achieve a good result. Indeed, by modifying this approach and making 
it more closely resemble the 1-D case, a nontangling version of the algorithm in 
2-D may be obtained (see Baines [1]). 

8. APPROXIMATE EQUIDISTRIBUTION RESULTS IN ONE DIMENSION 

In this section, following [6], we derive asymptotic equidistribution results 
for the linear and constant cases in one dimension, showing the link between 
equidistribution and approximation by piecewise discontinuous linear and con- 
stant functions with adjustable nodes. 

Using the standard interpolation bound for linear interpolation in element 
k, we have 

(8.1) If (x)-_u*(x)|I < I 
(Xk _Xk_1)2 max If" 8 ~~~~k 

and, if El (x) is an equidistributing function, 

(8.2) (xk - xk1 )El(0k) = a constant, Cl, say, 

where Xk-l < Ok < Xk. Hence, we get 

rXn (f ) x<1 n oXk 

(8.3) J(f U)2 dx? < J {E' (0k)} max If"12 dx 
k-4 i X: k 

I 
k 
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Finally, as in [6], we approximate the right-hand side of (8.3) by the integral 

1 rXn 
(8.4) _C4 j {E1(X)}-4{f/(X)}2 dx 

and minimize over functions El (x), yielding 

(8.5) d [{E' (x)} 5{5f(x)}2] = 0, 
dx- 

I~ 

(8.6) El (x) oc {f"(a)}2/5 da, 

which may be regarded as the asymptotically equidistributed function. 
Similarly, in the piecewise constant case the standard interpolation bound 

gives 

(8.7) If(x)-ukI < -(Xk-Xklk ) max I f'I 
and, if Eo(x) is the equidistributing function, 

(8.8) (xk- xk-l)EO(Ok)= a constant, Co, say, 

where Xk-2 < Ok < Xk. Hence, we have 

(8.9) j (f-uk)2dx < 6CO EJ {E6(0k)} 2 max If'12. 
k=1Xl k1 

Finally, as before, we approximate the right-hand side of (8.9) by the integral 

(8.10) _ CI2 {E6(x)}-2{f'(x)}2 dx 

and minimize over functions Eo(x), yielding 

(8.11) d [{EO(X)1 3{f'(x)}2] = 0, 

or 

(8.12) Eo(x) oc J {f'(a)}213 da, 

which may be regarded as the asymptotically equidistributed function. 
These results are approximately borne out by the results in ??3 and 4, which 

therefore correspond to approximate equidistribution of the functions (8.6) and 
(8.12), respectively. 

9. CONCLUSIONS 

We have shown that a particular variational approach to finding optimal L2 
fits to a continuous function among piecewise discontinuous linear or constant 
functions can be used to generate fast and robust algorithms for obtaining such 
fits. In one dimension the algorithms are conceptually simple, avoid mesh tan- 
gling, and are easy to implement. In particular, in the one-dimensional linear 
case the fits obtained are optimal L2 piecewise linear continuous fits a.e. 

We have also demonstrated the strong connection between piecewise discon- 
tinuous fits with adjustable nodes and equidistribution. 
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In two dimensions the algorithms are less robust and harder to implement, 
needing relaxation parameters to prevent mesh tangling. However, versions 
using simple quadrature have been shown to be effective for functions with 
steep fronts. 

The extension to three dimensions is straightforward. The main difference 
in the theory is that in (5.7) the two types of integral are over tetrahedra and 
their faces. The spokes of the j-star contour become the faces of the triangles 
which have node j as one of their vertices. Versions using simple quadrature 
formulae and the closely related versions fitting interpolants of f are easily 
constructed. 
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